The use of dual reciprocity boundary element method in coupled thermoviscoelasticity

A boundary element formulation is presented in a unified form for the analysis of thermoviscoelasticity problems. The formulation contains the thermoelastic material as a special case. The boundary-only nature of boundary element method is retained through the use of particular integral method; wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2006-12, Vol.196 (1), p.379-392
Hauptverfasser: Baranoglu, Besim, Mengi, Yalcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A boundary element formulation is presented in a unified form for the analysis of thermoviscoelasticity problems. The formulation contains the thermoelastic material as a special case. The boundary-only nature of boundary element method is retained through the use of particular integral method; where the particular solutions are evaluated with the aid of dual reciprocity approximation. The proposed formulation can be used in both coupled and uncoupled thermoviscoelasticity analyses, and it permits performing the analysis in terms of fundamental solutions of viscoelastodynamics and diffusion (thermal) equation, and eliminates the need for using the complicated fundamental solutions of coupled thermoviscoelasticity. The formulation is performed in Fourier space where any viscoelastic model can be simulated via the correspondence principle. The determination of the response in time space requires the inversion which can be carried out conveniently by using the fast Fourier transform algorithm. For assessment, some sample problems, both uncoupled and coupled, are considered and whenever possible comparisons are given with the exact data. It is found that the formulation developed in the study, even with the simplest base function proposed in literature, may be used reliably in thermoviscoelasticity analysis, at least, for the problems with finite solution domains.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2006.07.003