Photodegradation of new amino acid derivatives suitable for chelating agents in pulp bleaching applications

The purpose of this study was to evaluate photodegradabilities of the following new low-nitrogen chelating agents: N-bis[(carboxymethoxy)ethyl]glycine (compound 1), N-bis[(1,2-dicarboxyethoxy)ethyl]glycine (compound 2) and N-bis[(1,2-dicarboxyethoxy)ethyl]aspartic acid (compound 3). At first photode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2004-09, Vol.56 (11), p.1077-1084
Hauptverfasser: Metsärinne, Sirpa, Peltonen, Päivi, Aksela, Reijo, Tuhkanen, Tuula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to evaluate photodegradabilities of the following new low-nitrogen chelating agents: N-bis[(carboxymethoxy)ethyl]glycine (compound 1), N-bis[(1,2-dicarboxyethoxy)ethyl]glycine (compound 2) and N-bis[(1,2-dicarboxyethoxy)ethyl]aspartic acid (compound 3). At first photodegradation of these chelating agents as uncomplexed Na-compound 1– 3 and Cu(II) complexes were tested, both in lake and distilled water, by exposing them to near-UV region radiation at the range of 315–400 nm. Uncomplexed Na-compounds 2 and 3 were selected to sunlight exposure experiments carried out in lake and distilled water. Compound 3 was also tested in sunlight as Cu and Ca complexes in both solutions. Photodegradation of Na 6-compound 3 in distilled water was studied by exposing it to radiation at the wavelength of 253.7 nm. Photodegradation products were analysed by means of GC-MS (gas chromatography with mass selective detector). The results demonstrated that compound 1 was quite photostable even as Cu complex while compounds 2 and 3 were found to be photodegradable. Over 90% reduction of compound 3 was achieved during one week and 80% reduction of compound 2 in two weeks' time when they were added as Na salt to lake water and exposed to sunlight. Compound 3 as Cu complex degraded totally in the sunlight in less than one week. In the case of compound 3, the degradation rate decreased depending on the counter cation in the order Cu > Na ⩾ Ca. The study demonstrated that photodegradation of Na 6-compound 3 does not result in total mineralization of the compound. A photodegradation pathway for Na 6-compound 3 is proposed.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2004.05.026