A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem
We propose a threshold-varying artificial neural network (TV-ANN) approach for solving the binary classification problem. Using a set of simulated and real-world data set for bankruptcy prediction, we illustrate that the proposed TV-ANN fares well, both for training and holdout samples, when compare...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2005-10, Vol.32 (10), p.2561-2582 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a threshold-varying artificial neural network (TV-ANN) approach for solving the binary classification problem. Using a set of simulated and real-world data set for bankruptcy prediction, we illustrate that the proposed TV-ANN fares well, both for training and holdout samples, when compared to the traditional backpropagation artificial neural network (ANN) and the statistical linear discriminant analysis. The performance comparisons of TV-ANN with a genetic algorithm-based ANN and a classification tree approach C4.5 resulted in mixed results. |
---|---|
ISSN: | 0305-0548 1873-765X 0305-0548 |
DOI: | 10.1016/j.cor.2004.06.023 |