A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem

We propose a threshold-varying artificial neural network (TV-ANN) approach for solving the binary classification problem. Using a set of simulated and real-world data set for bankruptcy prediction, we illustrate that the proposed TV-ANN fares well, both for training and holdout samples, when compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2005-10, Vol.32 (10), p.2561-2582
1. Verfasser: Pendharkar, Parag C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a threshold-varying artificial neural network (TV-ANN) approach for solving the binary classification problem. Using a set of simulated and real-world data set for bankruptcy prediction, we illustrate that the proposed TV-ANN fares well, both for training and holdout samples, when compared to the traditional backpropagation artificial neural network (ANN) and the statistical linear discriminant analysis. The performance comparisons of TV-ANN with a genetic algorithm-based ANN and a classification tree approach C4.5 resulted in mixed results.
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2004.06.023