L-Methionine accentuates anti-tumor action of Gefitinib in Gefitinib-resistant lung adenocarcinoma: Role of EGFR/ERK/AKT signaling and histone H3K36me2 alteration

Adenocarcinoma, the predominant subtype of non-small cell lung cancer (NSCLC), poses a significant clinical challenge due to its prevalence and aggressive nature. Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor is often susceptible to development of resistance despite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2024-04, Vol.485, p.116907-116907, Article 116907
Hauptverfasser: Pal, Swagata, Kabeer, Shaheen Wasil, Tikoo, Kulbhushan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adenocarcinoma, the predominant subtype of non-small cell lung cancer (NSCLC), poses a significant clinical challenge due to its prevalence and aggressive nature. Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor is often susceptible to development of resistance despite being the preferred treatment option for NSCLC. In this study, we investigated the potential of L-Methionine in enhancing the cytotoxicity of Gefitinib and preventing resistance development. In vitro experiment employing the H1975 cell line demonstrated a notable enhancement in cytotoxic efficacy when L-Methionine (10 mM) was combined with Gefitinib, as indicated by a substantial reduction in IC50 values (155.854 ± 1.87 μM vs 45.83 ± 4.83 μM). Complementary in vivo investigations in a lung cancer model corroborated these findings. Co-administration of L-Methionine (100 mg/kg and 400 mg/kg) with Gefitinib (15 mg/kg) for 21 days exhibited marked improvements in therapeutic efficacy, which was observed by macroscopic and histopathological assessments. Mechanistic insights revealed that the enhanced cytotoxicity of the combination stemmed from the inhibition of the EGFR, modulating the downstream cascade of ERK/AKT and AMPK pathways. Concurrently inhibition of p-AMPK-α by the combination also disrupted metabolic homeostasis, leading to the increased production of reactive oxygen species (ROS). Notably, L-Methionine, functioning as a methyl group donor, elevated the expression of H3K36me2 (an activation mark), while reducing the p-ERK activity. Our study provides the first evidence supporting L-Methionine supplementation as a novel strategy to enhance Gefitinib chemosensitivity against pulmonary adenocarcinoma. [Display omitted] •L-Methionine potentiates Gefitinib's cytotoxicity in H1975 lung cancer cell line.•L-Methionine boosts Gefitinib's antitumor action in urethane-induced lung cancer.•Inhibition of EGFR/ERK/AKT and AMPK, key to L-Methionine and Gefitinib efficacy.•L-Methionine-Gefitinib combination is a potential therapy in lung adenocarcinoma.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2024.116907