Phytosynthesis of zinc oxide nanoparticles for enhanced antioxidant, antibacterial, and photocatalytic properties: A greener approach to environmental sustainability
Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such a...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-06, Vol.251 (Pt 2), p.118770, Article 118770 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV–Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV–vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.
[Display omitted]
•Synthesis of ZnONPs was achieved using Tinospora cordifolia (TC) leaf extract.•TC-ZnONPs absorb at a wavelength centered at 374 nm in the UV–vis spectra.•TC-ZnONPs proved notable free radical scavenging capacity on DPPH, ABTS, and NO.•TC-ZnONPs exhibited remarkable antibacterial effect on B. cereus and E. coli.•Additionally, TC-ZnONPs show promising photocatalytic ability on methylene blue dye. |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.118770 |