Molecular Insights into the Variability in Infection and Immune Evasion Capabilities of SARS-CoV‑2 Variants: A Sequence and Structural Investigation of the RBD Domain
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continuously emerge, an increasing number of mutations are accumulating in the Spike protein receptor-binding domain (RBD) region. Through sequence analysis of various Variants of Concern (VOC), we identified that they predomin...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-04, Vol.64 (8), p.3503-3523 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continuously emerge, an increasing number of mutations are accumulating in the Spike protein receptor-binding domain (RBD) region. Through sequence analysis of various Variants of Concern (VOC), we identified that they predominantly fall within the ο lineage although recent variants introduce any novel mutations in the RBD. Molecular dynamics simulations were employed to compute the binding free energy of these variants with human Angiotensin-converting enzyme 2 (ACE2). Structurally, the binding interface of the ο RBD displays a strong positive charge, complementing the negatively charged binding interface of ACE2, resulting in a significant enhancement in the electrostatic potential energy for the ο variants. Although the increased potential energy is partially offset by the rise in polar solvation free energy, enhanced electrostatic potential contributes to the long-range recognition between the ο variant’s RBD and ACE2. We also conducted simulations of glycosylated ACE2-RBD proteins. The newly emerged ο (JN.1) variant has added a glycosylation site at N-354@RBD, which significantly weakened its binding affinity with ACE2. Further, our interaction studies with three monoclonal antibodies across multiple SARS-CoV-2 strains revealed a diminished neutralization efficacy against the ο variants, primarily attributed to the electrostatic repulsion between the antibodies and RBD interface. Considering the characteristics of the ο variant and the trajectory of emerging strains, we propose that newly developed antibodies against SARS-CoV-2 RBD should have surfaces rich in negative potential and, postbinding, exhibit strong van der Waals interactions. These findings provide invaluable guidance for the formulation of future therapeutic strategies. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.3c01730 |