Direct visualization of stacking-selective self-intercalation in epitaxial Nb1+xSe2 films

Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-03, Vol.15 (1), p.2541-2541, Article 2541
Hauptverfasser: Wang, Hongguang, Zhang, Jiawei, Shen, Chen, Yang, Chao, Küster, Kathrin, Deuschle, Julia, Starke, Ulrich, Zhang, Hongbin, Isobe, Masahiko, Huang, Dennis, van Aken, Peter A., Takagi, Hidenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb 1+ x Se 2 . We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation. The interplay between stacking configurations and atom intercalation in van der Waals materials has been rarely characterized at the microscopic level. Here, the authors report an electron microscopy study of stacking-selective self-intercalation in Nb 1+x Se 2 films, showing potential for nanoscale engineering of electronic properties in van der Waals materials and devices.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46934-0