Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrödinger equation

Two trigonometrically fitted methods based on a classical Runge-Kutta method of Kutta-Nyström are being constructed. The new methods maintain the fifth algebraic order of the classical one but also have some other significant properties. The most important one is that in the local truncation error o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computer modelling 2005-10, Vol.42 (7), p.877-886
Hauptverfasser: Anastassi, Z.A., Simos, T.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two trigonometrically fitted methods based on a classical Runge-Kutta method of Kutta-Nyström are being constructed. The new methods maintain the fifth algebraic order of the classical one but also have some other significant properties. The most important one is that in the local truncation error of the new methods the powers of the energy are lower and that keeps the error at lower values, especially at high values of energy. The error analysis justifies the actual results when integrating the radial Schrödinger equation, where the high efficiency of the new methods is shown.
ISSN:0895-7177
1872-9479
DOI:10.1016/j.mcm.2005.09.016