Tunnel stability analysis during construction using a neuro-fuzzy system

This paper presents an alternative strategy to evaluate the stability of tunnels during the design and construction stages based on a hybrid system, composed by neural, neuro‐fuzzy and analytical solutions. A prototype of this system is designed using a database formed by 261 cases, 45 real and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2005-12, Vol.29 (15), p.1433-1456
Hauptverfasser: Luis Rangel, José, Iturrarán-Viveros, Ursula, Gustavo Ayala, A., Cervantes, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an alternative strategy to evaluate the stability of tunnels during the design and construction stages based on a hybrid system, composed by neural, neuro‐fuzzy and analytical solutions. A prototype of this system is designed using a database formed by 261 cases, 45 real and the rest synthetic. This system is capable of reproducing the displacements induced at the periphery of the tunnel before and after support installation. The stability of the excavation process is evaluated using a criterion that considers dimensionless parameters based on the shear strength of the media, the induced deformation level in the ground, the plastic radii and the advance of excavation without support. The efficiency and validity of the prototype is verified with two examples of actual tunnels, one included in the database used to train the system and the other not included. The results of both examples show a better approximation than other commonly used techniques. Copyright © 2005 John Wiley & Sons, Ltd.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.463