Impulse noise and risk criteria

Impulse noise causes evidently more severe hearing loss than steady state noise. The additional effect of occupational impulse noise on hearing has been shown to be from 5 to 12 dB at 4 kHz audiometric frequency. Reported cases for compensated for hearing loss are prevalent in occupations where nois...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Noise & health 2003-07, Vol.5 (20), p.63-73
Hauptverfasser: Starck, J, Toppila, E, Pyykkö, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Impulse noise causes evidently more severe hearing loss than steady state noise. The additional effect of occupational impulse noise on hearing has been shown to be from 5 to 12 dB at 4 kHz audiometric frequency. Reported cases for compensated for hearing loss are prevalent in occupations where noise is impulsive. For impulse noise two measurement methods have been proposed: the peak level method and energy evaluation method. The applicability of the peak level method is difficult as even the recurrent impulses have different time and frequency characteristics. Various national risk criteria differ from international risk criteria. In France the maximum A-weighted peak level is 135 dB, and in the United Kingdom the C-weighted peak sound pressure is limited to 200 Pa (140 dB). This criterion of unweighted 200 Pa (140 dB) is used in European Union (EU) directive 86/188 and ISO 1999-1990 regardless of the number of impulses. The American Conference of Governmental Industrial Hygienists (ACGIH) has recommended that no exposure in excess of a C-weighted peak sound pressure level of 140 dB should be permitted. At work places these norms do not cause any practical consequences since the impulses seldom exceed 140 dB peak level. In several occupations the impulses are so rapid that they contribute only a minimal amount to the energy content of noise. These impulses can damage the inner ear even though they cause reduced awareness of the hazard of noise. Based to the present knowledge it is evident that there is the inadequacy of the equal energy principle in modelling the risk for hearing loss. The hearing protectors attenuate industrial impulse noise effectively due to the high frequency contents of impulses. Directive regarding the exposure of workers to the risks arising from noise requires that in risk assessment attention should be paid also to impulsive noise. So far there is no valid method to combine steady state and impulse noise. A statistical method for the measurements of industrial impulse noise is needed to get a preferably single number for risk assessment. There is an urgent task to develop risk assessment method and risk criteria for impulsive noise to meet the requirements of the upcoming European Union noise directive.
ISSN:1463-1741
1998-4030