Impact of storm events on disinfection byproduct precursors in a drinking water source in the Northeastern United States
•Storm events can increase natural organic matter (NOM) loading rates by more than an order of magnitude.•Dissolved organic carbon (DOC) loading during storm events closely parallels the loading of other organic parameters.•UV254 was a better surrogate indicator than DOC for DBP formation during sto...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2024-05, Vol.255, p.121445-121445, Article 121445 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Storm events can increase natural organic matter (NOM) loading rates by more than an order of magnitude.•Dissolved organic carbon (DOC) loading during storm events closely parallels the loading of other organic parameters.•UV254 was a better surrogate indicator than DOC for DBP formation during storm events.•DOC and flow pattern show a strong hysteresis during storm events which is event-specific.
Storm events play a crucial role in organic matter transport within watersheds and can increase the concentration and alter the composition of NOMs and DBP formation potential. To assess the impact that storm events can have on drinking water quality, samples were collected and analyzed across four storm events in the Neversink River, Catskill region, New York in 2019 and 2022. Source water natural organic matter (NOM) was characterized, and the change of NOM quality was evaluated due to storm impacts. During storm events, a high level of NOM mobilization is initiated by heavy precipitation causing overland flow and a rise in the water table. In this way, storms result in increased access to stored NOM pools that are generated during inter-storm periods. A significant correlation was observed between several organic water quality parameters such as UV absorbance (UV254), dissolved organic carbon (DOC) and chlorine demand. Precursors for the total trihalomethanes (TTHM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) exhibited comparable patterns with UV254, DOC, and chlorine demand for four storms. Despite the potential for increased dilution resulting from higher discharges, all organic water quality parameters, including yields of disinfection byproducts (i.e., DBP precursors), exhibited elevated concentrations during periods of higher flows. Three of the four storms showed hysteresis patterns with higher observed concentrations of organic constituents in the falling limb of the hydrographs. Precursors for the nitrogenous DBPs (N-DBPs) were proportional to the DOC for all four storms. The coefficient of determination (R2) for TTHM, DCAA, TCAA with UV254 is higher (R2 0.92–0.98) than corresponding correlations with DOC (R2 0.89–0.92). The R2 for UV254 showed the following hierarchy: DCAA≈TCAA>TTHM. Additionally, the R2 for DOC and specific ultraviolet absorbance (SUVA) had the following hierarchy: DCAA>TCAA>TTHM and TCAA>DCAA>TTHM respectively.
A significant correlation between UV254 and DOC (R = 0.99) for all storms was observed. Chlorine demand al |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2024.121445 |