The effect of filler concentration on the electrical, thermal, and mechanical properties of carbon particle and carbon fiber-reinforced poly(styrene-co-acrylonitrile) composites

Composite materials of poly (styrene‐co‐acrylonitrile) (luran) matrix with carbon fibers (CF)/carbon particles (CP) were prepared and their properties were evaluated. The mechanical and thermal properties of these composites were studied by dynamic mechanical analysis (DMA) and differential scanning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2007-04, Vol.28 (2), p.186-197
Hauptverfasser: Iqbal, Azhar, Frormann, Lars, Saleem, Anjum, Ishaq, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composite materials of poly (styrene‐co‐acrylonitrile) (luran) matrix with carbon fibers (CF)/carbon particles (CP) were prepared and their properties were evaluated. The mechanical and thermal properties of these composites were studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Although, by increasing the filler concentration no significant difference was found in melting and crystallization temperatures of the luran. The storage and tensile modulus of the composites increased linearly with filler concentration up to 40 wt % that was approximately three times higher than that of the virgin luran. There is a shift in glass transition temperature of the composite with increasing the filler concentration and the damping peak became flatter that indicated the effectiveness of the filler–matrix interaction. The volume resistivity and thermal conductivity (TC) of the composites were also measured. At a given carbon filler content the CF–Luran composites have much less volume resistivity as compared to CP–Luran composites. The decreased percolation threshold and volume resistivity in case of CF–Luran composites indicated that conductive paths existed in the composites. The conductive pathways were probably formed through interconnection of the carbon fillers. The volume resistivity was also decreased as a function of temperature. The thermal conductivity was increased linearly as a function of temperature with increasing filler concentration up to 40% of CF and CP. This increase was more profound in case of CF–Luran as compared to CP–Luran composites. This was owing to greater thermal networks of fibers as compared to particles. POLYM. COMPOS., 28:186–197, 2007. © 2007 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.20253