Thermal analysis of bicomponent fibres

A one-dimensional model of amorphous bicomponent spun fibres derived from the use of perturbation methods based on the slenderness ratio is presented. The model accounts for gravitational, surface tension, axial heat conduction, viscous dissipation and the nonlinear dependence of the dynamic viscosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2007-02, Vol.27 (2), p.586-598
1. Verfasser: Ramos, J.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A one-dimensional model of amorphous bicomponent spun fibres derived from the use of perturbation methods based on the slenderness ratio is presented. The model accounts for gravitational, surface tension, axial heat conduction, viscous dissipation and the nonlinear dependence of the dynamic viscosity law on temperature, but does not consider latent heat effects and the radial gradients of temperature and assumes Newtonian rheology. Studies on the effects of the thermal parameters on the compound fibre’s geometry and solidification have been performed, and show that the activation energy of the dynamic viscosity laws have a paramount effect on the fibre’s cooling, shape, and axial stresses on the core and sheath. In particular, it is shown that, when the activation energy of the viscosity law for the core is higher than that for the sheath, the axial stresses on the core are monotonic functions of the distance along the fibre and higher than those on the sheath, whereas those in the latter may exhibit a nonmonotonic behavior as functions of the thermal conductivity, heat losses and thermal inertia. Despite its limitations, the model presented here represents an improvement over available one-dimensional models for non-isothermal compound or bicomponent fibres.
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2006.05.033