Heat resistance of Paenibacillus polymyxa in relation to pH and acidulants
The efficacy of different organic acids in decreasing the heat resistance of Paenibacillus polymyxa spores was assessed. The relationship between concentration of the undissociated form of different organic acids and decrease in heat resistance was also investigated. The heat resistance of P. polymy...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2000-11, Vol.89 (5), p.801-806 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The efficacy of different organic acids in decreasing the heat resistance of Paenibacillus polymyxa spores was assessed. The relationship between concentration of the undissociated form of different organic acids and decrease in heat resistance was also investigated. The heat resistance of P. polymyxa spores was tested in distilled water at 85, 90 and 95 degrees C, at pH4 and in the presence of 50, 100 and 200 mmol l-1 of the undissociated form of lactic, citric or acetic acid and sodium citrate or acetate. The undissociated form of organic acids was responsible for increasing the heat sensitivity of spores. The most effective acid was lactic acid. The D values of the spores decreased rapidly (between 74 and 43%) in the presence of 50 mmol l-1 of the undissociated form of organic acid, and increasing concentrations of these forms affected the heat resistance of spores less than proportionally. The heat resistance of the spores in milk was approximately threefold lower than in distilled water. This work has shown that the undissociated fraction of organic acids increases, albeit non-linearly, the sensitivity of spores to heat, even in complex substrates such as milk. By knowing the amount of organic acids added to a given substrate, their dissociation constants and the final pH, it could be possible to estimate the concentration of undissociated forms and the corresponding increase in lethality of heat treatments. This would help the food industry to maximize the lethality achieved by heat processes and/or safely reduce the heat treatments already in use. |
---|---|
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1046/j.1365-2672.2000.01181.x |