Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X‐Ray Scattering
Nanocrystal self‐assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self‐assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals an...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (32), p.e2311714-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanocrystal self‐assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self‐assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed‐packed face‐centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X‐ray total scattering with pair distribution function analysis (TS‐PDF) and small‐angle X‐ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short‐range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X‐ray scattering.
In situ X‐ray pair distribution function (PDF) and small‐angle X‐ray scattering (SAXS) allow to follow the direct synthesis of CuPd icosahedra supercrystals. First, CuPd icosahedra are formed upon reduction of chemical precursors at high temperature. Then, ordering of the solvent molecules by cooling of the mixture initiates the self‐assembly of the icosahedra into face‐centered cubic (fcc) supercrystals. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202311714 |