High-Performance Ni3(HHTP)2 Film-Based Flexible Field-Effect Transistor Gas Sensors
Conductive metal–organic frameworks (MOFs) have received increasing attention in recent years and present high application potential as sensing elements in electronic sensors. In this study, flexible field-effect transistor (FET) sensors based on conductive MOF, i.e., Ni3(HHTP)2, have been construct...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2024-04, Vol.9 (4), p.1916-1926 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conductive metal–organic frameworks (MOFs) have received increasing attention in recent years and present high application potential as sensing elements in electronic sensors. In this study, flexible field-effect transistor (FET) sensors based on conductive MOF, i.e., Ni3(HHTP)2, have been constructed. This Ni3(HHTP)2 sensor has high sensitivity (detection limit of 56 ppb) as well as superior selectivity for NO2 detection at room temperature, which is demonstrated by accurate gas detection in a mixed gas atmosphere. Moreover, by employing six flexible substrates, i.e., polyimide (PI), tape (PET), facemask, paper cup, tablecloth, and take-out bag (textile), we successfully demonstrate the universality of the flexible sensor construction with conductive MOF as sensing film on various substrates. This study of conductive MOF-based flexible electronic sensors offers a new opportunity for a wide range of sensing applications with wearable and portable electronic devices. |
---|---|
ISSN: | 2379-3694 2379-3694 |
DOI: | 10.1021/acssensors.3c02656 |