Unlocking synergies: Harnessing the potential of biological methane sequestration through metabolic coupling between Methylomicrobium alcaliphilum 20Z and Chlorella sp. HS2
[Display omitted] •M. alcaliphilum 20Z and Chlorella sp. HS2 were co-cultivated in a saline medium.•Increased CH4 removal and growth of both microbes were observed in co-cultures.•Initial inoculum ratio did not result in a substantial difference in biomass yield.•pH recovery above mild alkaline leve...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2024-05, Vol.399, p.130607-130607, Article 130607 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•M. alcaliphilum 20Z and Chlorella sp. HS2 were co-cultivated in a saline medium.•Increased CH4 removal and growth of both microbes were observed in co-cultures.•Initial inoculum ratio did not result in a substantial difference in biomass yield.•pH recovery above mild alkaline level was observed in co-cultures.•Relatively high %C in the harvested biomass was observed in co-cultures.
A halotolerant consortium between microalgae and methanotrophic bacteria could effectively remediate in situ CH4 and CO2, particularly using saline wastewater sources. Herein, Methylomicrobium alcaliphilum 20Z was demonstrated to form a mutualistic association with Chlorella sp. HS2 at a salinity level above 3.0%. Co-culture significantly enhanced the growth of both microbes, independent of initial inoculum ratios. Additionally, increased methane provision in enclosed serum bottles led to saturated methane removal. Subsequent analyses suggested nearly an order of magnitude increase in the amount of carbon sequestered in biomass in methane-fed co-cultures, conditions that also maintained a suitable cultural pH suitable for methanotrophic growth. Collectively, these results suggest a robust metabolic coupling between the two microbes and the influence of the factors other than gaseous exchange on the assembled consortium. Therefore, multi-faceted investigations are needed to harness the significant methane removal potential of the identified halotolerant consortium under conditions relevant to real-world operation scenarios. |
---|---|
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2024.130607 |