The modelling of anchors using the material point method

The ultimate capacity of anchors is determined using the material point method (MPM). MPM is a so‐called meshless method capable of modelling large displacements, deformations and contact between different bodies. A short introduction to MPM is given and the derivation of the discrete governing equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2005-08, Vol.29 (9), p.879-895
Hauptverfasser: Coetzee, C. J., Vermeer, P. A., Basson, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ultimate capacity of anchors is determined using the material point method (MPM). MPM is a so‐called meshless method capable of modelling large displacements, deformations and contact between different bodies. A short introduction to MPM is given and the derivation of the discrete governing equations. The analysis of a vertically loaded anchor and one loaded at 45° is presented. The load–displacement curves are compared to that obtained from experiments and the effect of soil stiffness and anchor roughness is investigated. The results of the vertically loaded anchor are also compared to an analytical solution. The displacement of the soil surface above the anchor was measured and compared to the numerical predictions. Convergence with mesh refinement is demonstrated and the effect of mesh size and dilatancy angle on the shear band width and orientation is indicated. The results show that MPM can model anchor pull out successfully. No special interface elements are needed to model the anchor–soil interface and the predicted ultimate capacities were within 10% of the measured values. Copyright © 2005 John Wiley & Sons, Ltd.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.439