Thermodynamic evaluation of methanol steam reforming for hydrogen production

Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0–10), reforming temperature (25–1000 °C), pressure (0.5–3 atm), and product species. The chemical species considered were meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2006-10, Vol.161 (1), p.87-94
Hauptverfasser: Faungnawakij, Kajornsak, Kikuchi, Ryuji, Eguchi, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0–10), reforming temperature (25–1000 °C), pressure (0.5–3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol, propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio. Based upon a compound basis set MeOH, CO 2, CO, H 2 and H 2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 °C at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100–225 °C, S/C range of 1.5–3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration (
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2006.04.091