Glacial sediment causing regional-scale elevated arsenic in drinking water

In the upper Midwest, USA, elevated arsenic concentrations in public drinking water systems are associated with the lateral extent of northwest provenance late Wisconsin-aged drift. Twelve percent of public water systems located within the footprint of this drift (212 of 1764) exceed 10 microgram/L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground water 2005-11, Vol.43 (6), p.796-805
Hauptverfasser: Erickson, M.L, Barnes, R.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the upper Midwest, USA, elevated arsenic concentrations in public drinking water systems are associated with the lateral extent of northwest provenance late Wisconsin-aged drift. Twelve percent of public water systems located within the footprint of this drift (212 of 1764) exceed 10 microgram/L arsenic, which is the U.S. EPA's drinking water standard. Outside of the footprint, only 2.4% of public water systems (52 of 2182) exceed 10 microgram/L arsenic. Both glacial drift aquifers and shallow bedrock aquifers overlain by northwest provenance late Wisconsin-aged sediment are affected by arsenic contamination. Evidence suggests that the distinct physical characteristics of northwest provenance late Wisconsin-aged drift--its fine-grained matrix and entrained organic carbon that fosters biological activity--cause the geochemical conditions necessary to mobilize arsenic via reductive mechanisms such as reductive desorption and reductive dissolution of metal oxides. This study highlights an important and often unrecognized phenomenon: high-arsenic sediment is not necessary to cause arsenic-impacted ground water--when "impacted" is now defined as >10 microgram/L. This analysis also demonstrates the scientific and economic value of using existing large but imperfect statewide data sets to observe and characterize regional-scale environmental problems.
ISSN:0017-467X
1745-6584
DOI:10.1111/j.1745-6584.2005.00053.x