The Neumann problem for the ∞ -Laplacian and the Monge–Kantorovich mass transfer problem
We consider the natural Neumann boundary condition for the ∞ -Laplacian. We study the limit as p → ∞ of solutions of − Δ p u p = 0 in a domain Ω with | D u p | p − 2 ∂ u p / ∂ ν = g on ∂ Ω . We obtain a natural minimization problem that is verified by a limit point of { u p } and a limit problem tha...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2007-01, Vol.66 (2), p.349-366 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the natural Neumann boundary condition for the
∞
-Laplacian. We study the limit as
p
→
∞
of solutions of
−
Δ
p
u
p
=
0
in a domain
Ω
with
|
D
u
p
|
p
−
2
∂
u
p
/
∂
ν
=
g
on
∂
Ω
. We obtain a natural minimization problem that is verified by a limit point of
{
u
p
}
and a limit problem that is satisfied in the viscosity sense. It turns out that the limit variational problem is related to the Monge–Kantorovich mass transfer problems when the measures are supported on
∂
Ω
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2005.11.030 |