Crosstalk between TPC2 and IP3R regulates Ca2+ signals

Calcium (Ca2+) plays a pivotal role in cellular signal transmission by triggering downstream signaling in response to an increase in the cytosolic Ca2+ concentration. Intracellular organelles serve as Ca2+ stores that induce differently shaped Ca2+ signals. We discuss a study by Yuan et al. that inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cell biology 2024-05, Vol.34 (5), p.352-354
Hauptverfasser: Humer, Christina, Schindl, Rainer, Sallinger, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calcium (Ca2+) plays a pivotal role in cellular signal transmission by triggering downstream signaling in response to an increase in the cytosolic Ca2+ concentration. Intracellular organelles serve as Ca2+ stores that induce differently shaped Ca2+ signals. We discuss a study by Yuan et al. that investigated the interplay between the lysosomal two-pore channel 2 (TPC2) and endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptors (IP3Rs). Calcium (Ca2+) plays a pivotal role in cellular signal transmission by triggering downstream signaling in response to an increase in the cytosolic Ca2+ concentration. Intracellular organelles serve as Ca2+ stores that induce differently shaped Ca2+ signals. We discuss a study by Yuan et al. that investigated the interplay between the lysosomal two-pore channel 2 (TPC2) and endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptors (IP3Rs).
ISSN:0962-8924
1879-3088
DOI:10.1016/j.tcb.2024.03.001