Fabrication of material-independent morphology gradients for high-throughput applications

Gradient surfaces allow rapid, high-throughput investigations and systematic studies in many disparate fields, including biology, tribology and adhesion. We describe a novel method for the fabrication of material-independent morphology gradients, involving a two-step process of particle erosion foll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2006-12, Vol.253 (4), p.2148-2153
Hauptverfasser: Kunzler, Tobias P., Drobek, Tanja, Sprecher, Christoph M., Schuler, Martin, Spencer, Nicholas D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gradient surfaces allow rapid, high-throughput investigations and systematic studies in many disparate fields, including biology, tribology and adhesion. We describe a novel method for the fabrication of material-independent morphology gradients, involving a two-step process of particle erosion followed by a chemical polishing procedure that preferentially removes features with a small radius of curvature as a function of time. Gradients are fabricated on aluminium surfaces, but they may be readily transferred to other materials via a replication technique, which allows for the production of identical roughness gradient samples with any chosen surface chemistry. The gradients have been characterized by means of scanning electron microscopy and optical profilometry. Standard roughness parameters (Ra, Rq, Rz, Sm and Sk) were calculated from optical profilometry data. The roughness has also been assessed over different wavelength windows by means of a fast Fourier transformation approach.
ISSN:0169-4332
DOI:10.1016/j.apsusc.2006.04.014