Assessment of the load-bearing capacity of a primary pipeline

High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2007-04, Vol.74 (6), p.995-1005
Hauptverfasser: Gubeljak, Nenad, Tuma, Jelena Vojvodič, Šuštaršič, Borivoj, Predan, Jožef, Oblak, Maks
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 6
container_start_page 995
container_title Engineering fracture mechanics
container_volume 74
creator Gubeljak, Nenad
Tuma, Jelena Vojvodič
Šuštaršič, Borivoj
Predan, Jožef
Oblak, Maks
description High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughness of these materials strongly depends on their delta (δ) ferrite content, which spinodally decomposes into two phases with different ratios of Cr and Ni at a relatively low (slightly above 300 °C) temperature. This temperature is similar to the operating temperature of the vital parts, for example, the coolant system. The formation of two phases with the same crystal structure but different lattice parameters causes internal elastic stresses that result in a hardness increase and an impact-toughness decrease. The result is an increased risk of crack formation in the stress–concentration zones such as the critical regions of different welded joints (e.g. “L, T, K and X” shapes). The values of the critical stress intensity factor change according to its position along the crack contour. Therefore, the aim of our study was to assess the influence of the materials’ changes on the crack extension and the decrease of the primary pipeline’s bearing capacity by taking account of the increased temperature and time of operation for the given loading conditions. The SINTAP (European Structural Integrity Assessment Procedure) was used for this assessment.
doi_str_mv 10.1016/j.engfracmech.2006.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29642510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794406003316</els_id><sourcerecordid>29642510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-32924bf97a966d45bfaafdf179668ae3a960dce09db76f6d9de9abd8ba220acf3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjP5QD3FqcfiYHDtPElzSJC5wjN3G2TF1bkg6Jf0-mTYIjJ8v2Y7_2y9gNh4wDr-83GfUr61FvSa-zHKDOQGTAixM246Ip0qbg1SmbQSyljSzLc3YRwgYAmlrAjD3MQ6AQttRPyWCTaU1JN6BJW0Lv-lWicUTtpu99E5PRuy3672R0I3Wupyt2ZrELdH2Ml-zj6fF98ZIu355fF_NlqguRT2mRy7xsrWxQ1rUpq9YiWmN5E1OBVMQyGE0gTdvUtjbSkMTWiBbzHFDb4pLdHfaOfvjcUZjU1gVNXYc9DbugclmXecUhgvIAaj-E4Mmq48mKg9obpjbqj2Fqb5gCoaI7cfb2KIJBYxeZXrvwu0BUXPCKR25x4Ch-_OXIq6Ad9ZqM86QnZQb3D7UfU26H-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29642510</pqid></control><display><type>article</type><title>Assessment of the load-bearing capacity of a primary pipeline</title><source>Elsevier ScienceDirect Journals</source><creator>Gubeljak, Nenad ; Tuma, Jelena Vojvodič ; Šuštaršič, Borivoj ; Predan, Jožef ; Oblak, Maks</creator><creatorcontrib>Gubeljak, Nenad ; Tuma, Jelena Vojvodič ; Šuštaršič, Borivoj ; Predan, Jožef ; Oblak, Maks</creatorcontrib><description>High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughness of these materials strongly depends on their delta (δ) ferrite content, which spinodally decomposes into two phases with different ratios of Cr and Ni at a relatively low (slightly above 300 °C) temperature. This temperature is similar to the operating temperature of the vital parts, for example, the coolant system. The formation of two phases with the same crystal structure but different lattice parameters causes internal elastic stresses that result in a hardness increase and an impact-toughness decrease. The result is an increased risk of crack formation in the stress–concentration zones such as the critical regions of different welded joints (e.g. “L, T, K and X” shapes). The values of the critical stress intensity factor change according to its position along the crack contour. Therefore, the aim of our study was to assess the influence of the materials’ changes on the crack extension and the decrease of the primary pipeline’s bearing capacity by taking account of the increased temperature and time of operation for the given loading conditions. The SINTAP (European Structural Integrity Assessment Procedure) was used for this assessment.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2006.08.013</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture toughness testing ; Fundamental areas of phenomenology (including applications) ; Physics ; Pipeline ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Structure integrity assessment procedure ; Weld ; δ-Ferrite</subject><ispartof>Engineering fracture mechanics, 2007-04, Vol.74 (6), p.995-1005</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-32924bf97a966d45bfaafdf179668ae3a960dce09db76f6d9de9abd8ba220acf3</citedby><cites>FETCH-LOGICAL-c382t-32924bf97a966d45bfaafdf179668ae3a960dce09db76f6d9de9abd8ba220acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794406003316$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18518151$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gubeljak, Nenad</creatorcontrib><creatorcontrib>Tuma, Jelena Vojvodič</creatorcontrib><creatorcontrib>Šuštaršič, Borivoj</creatorcontrib><creatorcontrib>Predan, Jožef</creatorcontrib><creatorcontrib>Oblak, Maks</creatorcontrib><title>Assessment of the load-bearing capacity of a primary pipeline</title><title>Engineering fracture mechanics</title><description>High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughness of these materials strongly depends on their delta (δ) ferrite content, which spinodally decomposes into two phases with different ratios of Cr and Ni at a relatively low (slightly above 300 °C) temperature. This temperature is similar to the operating temperature of the vital parts, for example, the coolant system. The formation of two phases with the same crystal structure but different lattice parameters causes internal elastic stresses that result in a hardness increase and an impact-toughness decrease. The result is an increased risk of crack formation in the stress–concentration zones such as the critical regions of different welded joints (e.g. “L, T, K and X” shapes). The values of the critical stress intensity factor change according to its position along the crack contour. Therefore, the aim of our study was to assess the influence of the materials’ changes on the crack extension and the decrease of the primary pipeline’s bearing capacity by taking account of the increased temperature and time of operation for the given loading conditions. The SINTAP (European Structural Integrity Assessment Procedure) was used for this assessment.</description><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture toughness testing</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Pipeline</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Structure integrity assessment procedure</subject><subject>Weld</subject><subject>δ-Ferrite</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjP5QD3FqcfiYHDtPElzSJC5wjN3G2TF1bkg6Jf0-mTYIjJ8v2Y7_2y9gNh4wDr-83GfUr61FvSa-zHKDOQGTAixM246Ip0qbg1SmbQSyljSzLc3YRwgYAmlrAjD3MQ6AQttRPyWCTaU1JN6BJW0Lv-lWicUTtpu99E5PRuy3672R0I3Wupyt2ZrELdH2Ml-zj6fF98ZIu355fF_NlqguRT2mRy7xsrWxQ1rUpq9YiWmN5E1OBVMQyGE0gTdvUtjbSkMTWiBbzHFDb4pLdHfaOfvjcUZjU1gVNXYc9DbugclmXecUhgvIAaj-E4Mmq48mKg9obpjbqj2Fqb5gCoaI7cfb2KIJBYxeZXrvwu0BUXPCKR25x4Ch-_OXIq6Ad9ZqM86QnZQb3D7UfU26H-Q</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Gubeljak, Nenad</creator><creator>Tuma, Jelena Vojvodič</creator><creator>Šuštaršič, Borivoj</creator><creator>Predan, Jožef</creator><creator>Oblak, Maks</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20070401</creationdate><title>Assessment of the load-bearing capacity of a primary pipeline</title><author>Gubeljak, Nenad ; Tuma, Jelena Vojvodič ; Šuštaršič, Borivoj ; Predan, Jožef ; Oblak, Maks</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-32924bf97a966d45bfaafdf179668ae3a960dce09db76f6d9de9abd8ba220acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture toughness testing</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Pipeline</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Structure integrity assessment procedure</topic><topic>Weld</topic><topic>δ-Ferrite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubeljak, Nenad</creatorcontrib><creatorcontrib>Tuma, Jelena Vojvodič</creatorcontrib><creatorcontrib>Šuštaršič, Borivoj</creatorcontrib><creatorcontrib>Predan, Jožef</creatorcontrib><creatorcontrib>Oblak, Maks</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubeljak, Nenad</au><au>Tuma, Jelena Vojvodič</au><au>Šuštaršič, Borivoj</au><au>Predan, Jožef</au><au>Oblak, Maks</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the load-bearing capacity of a primary pipeline</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>74</volume><issue>6</issue><spage>995</spage><epage>1005</epage><pages>995-1005</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughness of these materials strongly depends on their delta (δ) ferrite content, which spinodally decomposes into two phases with different ratios of Cr and Ni at a relatively low (slightly above 300 °C) temperature. This temperature is similar to the operating temperature of the vital parts, for example, the coolant system. The formation of two phases with the same crystal structure but different lattice parameters causes internal elastic stresses that result in a hardness increase and an impact-toughness decrease. The result is an increased risk of crack formation in the stress–concentration zones such as the critical regions of different welded joints (e.g. “L, T, K and X” shapes). The values of the critical stress intensity factor change according to its position along the crack contour. Therefore, the aim of our study was to assess the influence of the materials’ changes on the crack extension and the decrease of the primary pipeline’s bearing capacity by taking account of the increased temperature and time of operation for the given loading conditions. The SINTAP (European Structural Integrity Assessment Procedure) was used for this assessment.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2006.08.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2007-04, Vol.74 (6), p.995-1005
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_29642510
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fracture toughness testing
Fundamental areas of phenomenology (including applications)
Physics
Pipeline
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Structure integrity assessment procedure
Weld
δ-Ferrite
title Assessment of the load-bearing capacity of a primary pipeline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20load-bearing%20capacity%20of%20a%20primary%20pipeline&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Gubeljak,%20Nenad&rft.date=2007-04-01&rft.volume=74&rft.issue=6&rft.spage=995&rft.epage=1005&rft.pages=995-1005&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2006.08.013&rft_dat=%3Cproquest_cross%3E29642510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29642510&rft_id=info:pmid/&rft_els_id=S0013794406003316&rfr_iscdi=true