Assessment of the load-bearing capacity of a primary pipeline

High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2007-04, Vol.74 (6), p.995-1005
Hauptverfasser: Gubeljak, Nenad, Tuma, Jelena Vojvodič, Šuštaršič, Borivoj, Predan, Jožef, Oblak, Maks
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughness of these materials strongly depends on their delta (δ) ferrite content, which spinodally decomposes into two phases with different ratios of Cr and Ni at a relatively low (slightly above 300 °C) temperature. This temperature is similar to the operating temperature of the vital parts, for example, the coolant system. The formation of two phases with the same crystal structure but different lattice parameters causes internal elastic stresses that result in a hardness increase and an impact-toughness decrease. The result is an increased risk of crack formation in the stress–concentration zones such as the critical regions of different welded joints (e.g. “L, T, K and X” shapes). The values of the critical stress intensity factor change according to its position along the crack contour. Therefore, the aim of our study was to assess the influence of the materials’ changes on the crack extension and the decrease of the primary pipeline’s bearing capacity by taking account of the increased temperature and time of operation for the given loading conditions. The SINTAP (European Structural Integrity Assessment Procedure) was used for this assessment.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2006.08.013