Spin splitting in open quantum dots
We demonstrate that the magnetoconductance of small lateral quantum dots in the strongly-coupled regime (i.e. when the leads can support one or more propagating modes) shows a pronounced splitting of the conductance peaks and dips which persists over a wide range of magnetic fields (from zero field...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that the magnetoconductance of small lateral quantum dots in the strongly-coupled regime (i.e. when the leads can support one or more propagating modes) shows a pronounced splitting of the conductance peaks and dips which persists over a wide range of magnetic fields (from zero field to the edge-state regime) and is virtually independent of the magnetic field strength. Our numerical analysis of the conductance based on the Hubbard Hamiltonian demonstrates that this is essentially a many-body/spin effect that can be traced to a splitting of degenerate levels in the corresponding closed dot. The above effect in open dots can be regarded as a counterpart of the Coulomb blockade effect in weakly coupled dots, with the difference, however, that the splitting of the peaks originates from the interaction between the electrons of opposite spin. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.1994644 |