A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion
The practicability of an improved procedure for simulating the response of a surface ship to an underwater explosion is demonstrated by examining transient responses for a 31,000-degree-of-freedom finite-element model of ship-like structure. The fluid model employs spectral elements of various order...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2006-03, Vol.195 (17), p.2149-2167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The practicability of an improved procedure for simulating the response of a surface ship to an underwater explosion is demonstrated by examining transient responses for a 31,000-degree-of-freedom finite-element model of ship-like structure. The fluid model employs spectral elements of various order, and models the cavitating fluid as a nonlinear acoustic medium with a bilinear bulk modulus. The number of fluid degrees of freedom ranges from 10
5 to 10
7. Also studied is the viability of dramatic mesh truncation, which is essential to the feasibility of the procedure. The results indicate that useful simulations may be performed on a modern PC when all of the resource-conserving improvements are fully exploited. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2005.03.007 |