Surface modification of PBO fibers by argon plasma and argon plasma combined with coupling agents

The methods of argon plasma and argon plasma combined with coupling agents were employed to modify the poly[1,4‐phenylene‐cis‐benzobisoxazole] (PBO) fiber surface. The interfacial shearing strength (IFSS) of PBO fibers/epoxy resin was measured by the single fiber pull‐out test. The surface chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2006-10, Vol.102 (2), p.1428-1435
Hauptverfasser: Liu, Dandan, Hu, Jian, Zhao, Yaoming, Zhou, Xuesong, Ning, Ping, Wang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The methods of argon plasma and argon plasma combined with coupling agents were employed to modify the poly[1,4‐phenylene‐cis‐benzobisoxazole] (PBO) fiber surface. The interfacial shearing strength (IFSS) of PBO fibers/epoxy resin was measured by the single fiber pull‐out test. The surface chemical structure and surface composition of PBO fibers were determined by FTIR and X‐ray photoelectron spectroscopy respectively. The morphology of the fiber surface was investigated by scanning electron microscopy and the specific surface area of the fibers was calculated by B.E.T. equation. Furthermore, the wettability of PBO fibers was confirmed by the droplet profile analysis method. The results showed that the elemental composition ratio of the fiber surface changed after the modification. The IFSS increased by 42 and 78% when the fibers were treated by argon plasma and argon plasma combined with the coupling agents, respectively. Meanwhile, the specific surface areas of the treated fibers were improved. In addition, compared with the modification of argon plasma, the modification of argon plasma combined with the coupling agents inhibited the attenuation phenomena of the IFSS and the wettability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1428–1435, 2006
ISSN:0021-8995
1097-4628
DOI:10.1002/app.24287