The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys
The usual process to produce NiTi shape memory alloys is by vacuum induction melting (VIM) using graphite crucible that contaminates the bath with carbon. The contamination by oxygen comes from residual oxygen inside the melting chamber. A new alternative process to produce NiTi alloys is by electro...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2006-11, Vol.438, p.679-682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The usual process to produce NiTi shape memory alloys is by vacuum induction melting (VIM) using graphite crucible that contaminates the bath with carbon. The contamination by oxygen comes from residual oxygen inside the melting chamber. A new alternative process to produce NiTi alloys is by electron beam melting (EBM) using water-cooled copper crucible that eliminates the carbon contamination and the oxygen contamination would be minimized due to operation in high vacuum. This work compares the two processes and shows that the carbon contamination is four to ten times lower for EBM compared to VIM products and that the final oxygen content is much more dependent on the starting raw materials. The purity of the final product should be very important mainly in terms of biomedical applications and the contaminations by carbon and oxygen affect the direct and reverse martensitic transformation temperatures. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2006.02.171 |