Corn Oligopeptide Alleviates Nonalcoholic Fatty Liver Disease by Regulating the Sirtuin Signaling Pathway

Nonalcoholic fatty liver disease (NAFLD) represents the most prevalent type of chronic liver disease, spanning from simple steatosis to nonalcoholic steatohepatitis (NASH). Corn oligopeptide (CP) is a functional peptide known for its diverse pharmacological effects on metabolism. In this study, we e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-03, Vol.72 (12), p.6360-6371
Hauptverfasser: Xu, Yali, Su, Ting, Mishra, Hricha, Ando, Reiko, Furutani, Yutaka, Lu, Jun, Cai, Muyi, Suzuki, Harukazu, Yu, Wenkui, Qin, Xian-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonalcoholic fatty liver disease (NAFLD) represents the most prevalent type of chronic liver disease, spanning from simple steatosis to nonalcoholic steatohepatitis (NASH). Corn oligopeptide (CP) is a functional peptide known for its diverse pharmacological effects on metabolism. In this study, we evaluated the protective activity of CP against fatty liver disease. Oral administration of CP significantly reduced body weight gain by 2.95%, serum cholesterol by 22.54%, and liver injury, as evidenced by a reduction of 32.19% in serum aspartate aminotransferase (AST) and 49.10% in alanine aminotransferase (ALT) levels in mice subjected to a high-fat diet (HFD). In a streptozotocin/HFD-induced NASH mouse model, CP attenuated body weight gain by 5.11%, liver injury (with a 34.15% decrease in AST and 11.43% decrease in ALT), and, to some extent, liver inflammation and fibrosis. Proteomic analysis revealed the modulation of oxidative phosphorylation and sirtuin (SIRT) signaling pathways by CP. Remarkably, CP selectively inhibited the hepatic expression of mitochondrial SIRT3 and SIRT5 in both HFD and NASH models. In summary, CP demonstrates a preventive effect against metabolic-stress-induced NAFLD progression by modulating oxidative stress and the SIRT signaling pathway, suggesting the potential of CP as a therapeutic agent for the treatment of NAFLD and advanced-stage NASH.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.3c09058