Model-based iterative reconstruction for direct imaging with point spread function encoded echo planar MRI

Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2024-06, Vol.109, p.189-202
Hauptverfasser: Meyer, Nolan K., In, Myung-Ho, Black, David F., Campeau, Norbert G., Welker, Kirk M., Huston, John, Halverson, Maria A., Bernstein, Matt A., Trzasko, Joshua D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential. An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets. Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two. A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.
ISSN:0730-725X
1873-5894
DOI:10.1016/j.mri.2024.03.009