Uncertainty analysis of greenhouse gas emissions of monorail transit during the construction

This paper examines the uncertainty of greenhouse gas (GHG) emissions during monorail construction. Firstly, a deterministic analysis is conducted. Subsequently, the obtained data are evaluated using the data quality indicator (DQI), and a Markov chain Monte Carlo (MCMC) simulation method is employe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-04, Vol.31 (17), p.25805-25822
Hauptverfasser: Li, Teng, Zhu, Eryu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the uncertainty of greenhouse gas (GHG) emissions during monorail construction. Firstly, a deterministic analysis is conducted. Subsequently, the obtained data are evaluated using the data quality indicator (DQI), and a Markov chain Monte Carlo (MCMC) simulation method is employed to assume different parameter distributions. The results of the deterministic calculation indicate that the calculated emissions per unit area of the station amount to 1.97 ton CO 2 e/m 2 , while the calculated emissions per unit section length reach 7.55 ton CO 2 e/m 2 . To simulate parameter distribution, we utilize a Beta distribution with good shape applicability. Furthermore, we establish scenarios involving system boundary reduction, low-emission factors, and reduced material and energy inputs in order to analyze scenario uncertainties. Regarding model uncertainty, this paper assumes that the material and energy quantity data conform to the normal, log-normal, uniform, and triangular distributions, respectively, subsequently analyzing the uncertainty distributions. This paper analyzes the GHG emission uncertainty evaluation of 16 monorail stations and sections during the construction period, which is divided into parameter, scenario, and model uncertainty. We provide a concrete framework for studying uncertainties related to GHG emissions at stations and sections during the monorail construction period. The scenario analysis results will help to make decisions about the choice of parameters, system boundaries, and other settings. It provides new guidance for emission reduction policies, such as reducing the use of steel-related products or using alternative environmentally friendly materials, considering emission reduction factors more comprehensively and setting emission reduction factors according to uniform distribution principle as far as possible.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-32863-4