Empirical investigation of passive blood drop trajectory and first point of contact on inclined surfaces
The first point of contact between a spherical blood drop and a surface is related to the angle between the trajectory of the blood drop and the surface being struck. This angle is often referred to as the impact angle which can be estimated by knowing the width and length of the resultant elliptica...
Gespeichert in:
Veröffentlicht in: | Forensic science international 2024-04, Vol.357, p.111986-111986, Article 111986 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first point of contact between a spherical blood drop and a surface is related to the angle between the trajectory of the blood drop and the surface being struck. This angle is often referred to as the impact angle which can be estimated by knowing the width and length of the resultant elliptical bloodstain. Most software programs dedicated to area of origin analysis indicate the location of the backtracked bloodstain trajectory to be at the geometric centre or at the tip of the bloodstain ellipse. However, it is unknown how the first point of contact and the blood drop trajectory (here defined as the locus of the centre of mass of the drop as it travels) are related empirically. Thus, this study aims to look at how the initial point of contact and the trajectory at the impact of a blood drop relates to the formed bloodstain ellipse. Two volumes of blood (0.013 ml and 0.071 ml) were dropped from a height of 10 cm and 40 cm onto an inclined surface at 0°, 15°, 30°, 45°, 60°, and 75°. The transition from a spherical blood drop to an elliptically shaped bloodstain was recorded using a high-speed camera for all tests. A total of 72 ellipses were analyzed to determine the location of the first point of contact and trajectory point of the blood drop and how they relate to the formed elliptical bloodstain. A relationship was found between the first point of contact and the bloodstain trajectory which was dependent on the impact angle. However, there were clear deviations from theoretical assumptions due to blood drop oscillations, the effects of gravity, and the natural fluid characteristics of blood. The results of this study may assist bloodstain pattern analysts and software developers by more accurately applying the location of the blood drop trajectory based on empirical data.
•The first point of contact follows a similar trend to the sine value.•The trajectory point moves along the half-length of the bloodstain.•The trajectory point and first point of contact are mainly at different locations.•The trajectory point is not always at the centre or tip of the ellipse.•The first point of contact is not always at the centre of tip of the ellipse. |
---|---|
ISSN: | 0379-0738 1872-6283 |
DOI: | 10.1016/j.forsciint.2024.111986 |