Grazing alters the soil nematode communities in grasslands: A meta-analysis

Grazing causes great disturbances in grassland ecosystems and may change the abundance, diversity, and ecological function of soil biota. Because of their important role in nutrient cycling and as good environmental indicators, nematodes are very representative soil organisms. However, the mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2024-04, Vol.356, p.120668-120668, Article 120668
Hauptverfasser: Sun, Zhaokai, Sun, Chongzhi, Feng, Xin, Zhang, Tongrui, Liu, Jia, Wang, Xinning, Li, Shucheng, Tang, Shiming, Jin, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grazing causes great disturbances in grassland ecosystems and may change the abundance, diversity, and ecological function of soil biota. Because of their important role in nutrient cycling and as good environmental indicators, nematodes are very representative soil organisms. However, the mechanisms by which grazing intensity, livestock type, duration, and environmental factors (e.g., climate and edaphic factors) affect soil nematodes remain poorly understood. In this study, we collected 1964 paired observations all over the world from 53 studies to clarify the grazing response patterns of soil nematodes and their potential mechanisms. Overall, grazing significantly decreased the abundance of bacterial-feeding (BF) nematodes (−16.54%) and omnivorous-predatory (OP) nematodes (−36.81%), and decreased nematode community diversity indices (Shannon–Weiner index: −4.33%, evenness index: −9.22%, species richness: −5.35%), but had no effect on ecological indices under a global regional scale. The response of soil nematodes to grazing varied by grazing intensity, animals, and duration. Heavy grazing decreased OP nematode abundance, but had no effect on the abundance of other trophic groups, or on diversity or ecological indices. Grazing by small animals had stronger effects than that by large animals and mixed-size animals on BF, fungal-feeding (FF), plant-feeding (PF) and OP nematodes, the Shannon–Wiener index, and the species richness index. The abundance of FF and OP nematodes influenced significantly under short-term grazing. The evenness index decreased significantly under long-term grazing (>10 years). Climate and edaphic factors impacted the effects of grazing on nematode abundance, diversity, and ecological indices. When resources (i.e., rain, heat, and soil nutrients) were abundant, the negative effects of grazing on nematodes were reduced; under sufficiently abundant resources, grazing even had positive effects on soil nematode communities. Thus, the influence of grazing on soil nematode communities is resource-dependent. Our study provides decision makers with grazing strategies based on the resource abundance. Resource-poor areas should have less grazing, while resource-rich areas should have more grazing to conserve soil biodiversity and maintain soil health. [Display omitted] •Grazing had a negative impact on BF and OP nematodes on a global scale.•Grazing intensity, animal type, and duration affected nematode communities.•Nematode community response
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2024.120668