A posteriori stopping rule for regularized fixed point iterations
Iteratively regularized fixed-point iteration scheme x n + 1 = x n - α n { F ( x n ) - f δ + ε n ( x n - x 0 ) } combined with the generalized discrepancy principle ∥ F ( x N ) - f δ ∥ 2 ⩽ τ δ < ∥ F ( x n ) - f δ ∥ 2 , 0 ⩽ n < N , τ > 1 , for solving nonlinear operator equation F ( x ) = f...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2006-03, Vol.64 (6), p.1255-1261 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iteratively regularized fixed-point iteration scheme
x
n
+
1
=
x
n
-
α
n
{
F
(
x
n
)
-
f
δ
+
ε
n
(
x
n
-
x
0
)
}
combined with the generalized discrepancy principle
∥
F
(
x
N
)
-
f
δ
∥
2
⩽
τ
δ
<
∥
F
(
x
n
)
-
f
δ
∥
2
,
0
⩽
n
<
N
,
τ
>
1
,
for solving nonlinear operator equation
F
(
x
)
=
f
in a Hilbert space is studied in the paper. It is shown that if
F
is monotone and Lipschitz-continuous the sequence
{
N
(
δ
)
}
is admissible, i.e.
(1)
lim
δ
→
0
∥
x
N
(
δ
)
-
x
*
∥
=
0
,
where
x
*
is a solution to
F
(
x
)
=
f
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2005.06.031 |