Robust stability for stochastic Hopfield neural networks with time delays

In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2006-12, Vol.7 (5), p.1119-1128
Hauptverfasser: Wang, Zidong, Shu, Huisheng, Fang, Jian’an, Liu, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov–Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2005.10.004