Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans

Biological solubilisation of heavy metals contained in two different kinds of industrial wastes was performed in batches employing a strain of Thiobacillus ferroxidans. The wastes tested were: a dust coming from the iron-manganese alloy production in an electric furnace (sludge 1) and a sludge comin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 2002-01, Vol.22 (6), p.667-675
Hauptverfasser: Solisio, C, Lodi, A, Veglio’, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biological solubilisation of heavy metals contained in two different kinds of industrial wastes was performed in batches employing a strain of Thiobacillus ferroxidans. The wastes tested were: a dust coming from the iron-manganese alloy production in an electric furnace (sludge 1) and a sludge coming from a process treatment plant of aluminium anodic oxidation (sludge 2). The experimental results pointed out the ability of the used strain to maintain the environment, that initially has a pH about 8, at strongly acid conditions (pH 2.5–3.5), producing sulphuric acid that is the chemical agent responsible for the metals solubilisation. At wastes initial concentration of 1%, the percentage of solubilised metals was 76 and 78% for the wastes 1 and 2, respectively, but the lag phase was considerably longer for sludge 2 than for sludge 1, indicating a different affinity of microorganisms for the solid phase. Increasing the initial slurry concentration, the percentage of removed metal reached 72–73% for the sludge 1, while in case of sludge 2, the total amount of solubilized metal progressively decreased. Two kinetic models are proposed to describe the trends of metals solubilization curves.
ISSN:0956-053X
1879-2456
DOI:10.1016/S0956-053X(01)00052-6