Inhibiting Soluble Epoxide Hydrolase Suppresses NF-κB p65 Signaling and Reduces CXCL10 Expression as a Potential Therapeutic Target in Hashimoto's Thyroiditis

Abstract Background Although Hashimoto's thyroiditis (HT) is one of most common autoimmune thyroid diseases, its treatment remains focused on symptom relief. The soluble epoxide hydrolase (sEH) shows potential functions as a drug target in alleviating some autoimmune diseases; however, we seldo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2024-10, Vol.109 (10), p.2579-2588
Hauptverfasser: Feng, Jing, Xu, Xianghong, Cai, Wei, Yang, Xingwen, Niu, Ruilan, Han, Ziqi, Tian, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Although Hashimoto's thyroiditis (HT) is one of most common autoimmune thyroid diseases, its treatment remains focused on symptom relief. The soluble epoxide hydrolase (sEH) shows potential functions as a drug target in alleviating some autoimmune diseases; however, we seldom know its role in HT. Methods The protein expression of sEH and related downstream molecules were evaluated by immunohistochemistry, Western blotting, ELISA, or immunofluorescence staining. RNA sequencing of tissue samples was performed to analyze differential genes and dysregulated pathways in HT and controls. The thyroid follicular epithelial cells (TFECs) and rat HT model were used to verify the biological function of sEH and the inhibition role of adamantyl-ureido-dodecanoic acid (AUDA) in HT. Results The sEH was significantly upregulated in HT patients compared with healthy individuals. Transcriptome sequencing showed cytokine-related pathways and chemokine expression; especially chemokine CXCL10 and its receptor CXCR3 were aberrant in HT patients. In TFECs and a rat HT model, blocking sEH by AUDA inhibitor could effectively inhibit the autoantibody, proinflammatory nuclear kappa factor B (NF-κB) signaling, chemokine CXCL10/CXCR3 expression, and type-1 helper CD4+ T cells. Conclusion Our findings suggest that sEH/NF-κB p65/CXCL10-CXCR3 might be promising therapeutic targets for HT.
ISSN:0021-972X
1945-7197
1945-7197
DOI:10.1210/clinem/dgae163