Optical properties and luminescence of metallic nanoclusters in ZnO:Cu

Copper nanoparticles have been formed in a zinc oxide (ZnO) substrate by Cu implantation at 160 keV. The implant layer shows amorphised behaviour as monitored by the RBS data and optical absorption indicates the surface plasmon resonance peak characteristic of copper nanoparticles. There is nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2005-06, Vol.363 (1), p.88-95
Hauptverfasser: Karali, T., Can, N., Valberg, L., Stepanov, A.L., Townsend, P.D., Buchal, Ch, Ganeev, R.A., Ryasnyansky, A.I., Belik, H.G., Jessett, M.L., Ong, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper nanoparticles have been formed in a zinc oxide (ZnO) substrate by Cu implantation at 160 keV. The implant layer shows amorphised behaviour as monitored by the RBS data and optical absorption indicates the surface plasmon resonance peak characteristic of copper nanoparticles. There is nonlinear optical absorption from the Cu nanoparticles. There are numerous changes in the luminescence responses which include a variety of green and yellow emission bands. During excitation there were changes in the cathodoluminescence intensity and lifetime influenced by the surface events, including some unusual features, which may be considered in terms of interactions with surface water and ice. Radioluminescence signals oscillate between the normal emission bands and the wide red line emission from free Zn. Overall ZnO is, therefore, an unexpectedly interesting host for dispersed Cu nanoparticles, not least because the optical features may be compatible with the semiconductor aspects of ZnO.
ISSN:0921-4526
DOI:10.1016/j.physb.2005.03.006