Double-rotation (DOR) NMR spectroscopy: Progress and perspectives
Double-rotation (DOR) solid-state NMR spectroscopy is a high-resolution technique developed in the late 1980s. Although multiple-quantum magic-angle spinning (MQMAS) became the most widely used high-resolution method for half-integer spin quadrupoles after 1995, development and application of DOR NM...
Gespeichert in:
Veröffentlicht in: | Solid state nuclear magnetic resonance 2024-04, Vol.130, p.101923-101923, Article 101923 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Double-rotation (DOR) solid-state NMR spectroscopy is a high-resolution technique developed in the late 1980s. Although multiple-quantum magic-angle spinning (MQMAS) became the most widely used high-resolution method for half-integer spin quadrupoles after 1995, development and application of DOR NMR to a variety of chemical and materials science problems has endured. This Trend article recapitulates the development of DOR NMR, discusses various applications, and describes possible future directions. The main technical limitations specific to DOR NMR are simply related to the size of the double rotor system. The relatively large outer rotor (and thus coil) used for most applications over the past 35 years translates into relatively low rotor spinning frequencies, a low filling factor, and weak radiofrequency powers available for excitation and for proton decoupling. Ongoing developments in NMR instrumentation, including ever-shrinking MAS rotors and spherical NMR rotors, could solve many of these problems and may augur a renaissance for DOR NMR.
[Display omitted]
•Advances in double-rotation solid-state NMR spectroscopy are reviewed.•DOR NMR provides high-resolution spectra of quadrupolar nuclei in one dimension.•Limitations include a poor filling factor, low spinning rates, and low rf powers.•New developments in magic angle spinning technology could reinvigorate DOR NMR. |
---|---|
ISSN: | 0926-2040 1527-3326 |
DOI: | 10.1016/j.ssnmr.2024.101923 |