Programmable Threshold Logic Implementations in a Memristor Crossbar Array
In this study, we demonstrate the implementation of programmable threshold logics using a 32 × 32 memristor crossbar array. Thanks to forming-free characteristics obtained by the annealing process, its accurate programming characteristics are presented by a 256-level grayscale image. By simultaneous...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-03, Vol.24 (12), p.3581-3589 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we demonstrate the implementation of programmable threshold logics using a 32 × 32 memristor crossbar array. Thanks to forming-free characteristics obtained by the annealing process, its accurate programming characteristics are presented by a 256-level grayscale image. By simultaneous subtraction between weighted sum and threshold values with a differential pair in an opposite way, 3-input and 4-input Boolean logics are implemented in the crossbar without additional reference bias. Also, we verify a full-adder circuit and analyze its fidelity, depending on the device programming accuracy. Lastly, we successfully implement a 4-bit ripple carry adder in the crossbar and achieve reliable operations by read-based logic operations. Compared to stateful logic driven by device switching, a 4-bit ripple carry adder on a memristor crossbar array can perform more reliably in fewer steps thanks to its read-based parallel logic operation. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.3c04073 |