Erythrocyte Membrane Camouflaged Nanotheranostics for Optical Molecular Imaging‐Escorted Self‐Oxygenation Photodynamic Therapy

Hypoxic tumor microenvironment (TME) hampers the application of oxygen (O2)‐dependent photodynamic therapy (PDT) in solid tumors. To address this problem, a biomimetic nanotheranostics (named MMCC@EM) is developed for optical molecular imaging‐escorted self‐oxygenation PDT. MMCC@EM is synthesized by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (31), p.e2309026-n/a
Hauptverfasser: Wan, Yilin, Li, Chunying, Fu, Lian‐Hua, Feng, Ting, Zhang, Yifan, Li, Youyan, Lin, Jing, Huang, Peng, Cui, Da‐Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxic tumor microenvironment (TME) hampers the application of oxygen (O2)‐dependent photodynamic therapy (PDT) in solid tumors. To address this problem, a biomimetic nanotheranostics (named MMCC@EM) is developed for optical molecular imaging‐escorted self‐oxygenation PDT. MMCC@EM is synthesized by encapsulating chlorin e6 (Ce6) and catalase (CAT) in metal–organic framework (MOF) nanoparticles with erythrocyte membrane (EM) camouflage. Based on the biomimetic properties of EM, MMCC@EM efficiently accumulates in tumor tissues. The enriched MMCC@EM achieves TME‐activatable drug release, thereby releasing CAT and Ce6, and this process can be monitored through fluorescence (FL) imaging. In addition, endogenous hydrogen peroxide (H2O2) will be decomposed by CAT to produce O2, which can be reflected by the measurement of intratumoral oxygen concentration using photoacoustic (PA) imaging. Such self‐oxygenation nanotheranostics effectively mitigate tumor hypoxia and improve the generation of singlet oxygen (1O2). The 1O2 disrupts mitochondrial function and triggers caspase‐3‐mediated cellular apoptosis. Furthermore, MMCC@EM triggers immunogenic cell death (ICD) effect, leading to an increased infiltration of cytotoxic T lymphocytes (CTLs) into tumor tissues. As a result, MMCC@EM exhibits good therapeutic effects in 4T1‐tumor bearing mice under the navigation of FL/PA duplex imaging. Erythrocyte membrane camouflaged nanotheranostics are developed for fluorescence/photoacoustic dual‐modal imaging‐escorted self‐oxygenation photodynamic therapy.
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202309026