The chromatin remodeling factor Arid1a cooperates with Jun/Fos to promote osteoclastogenesis by epigenetically upregulating Siglec15 expression
Osteoporosis is characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-related bone formation, particularly increased osteoclastogenesis. However, the mechanisms by which epigenetic factors regulate osteoclast precursor differentiation during osteoclastogenesis rema...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral research 2024-07, Vol.39 (6), p.775-790 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osteoporosis is characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-related bone formation, particularly increased osteoclastogenesis. However, the mechanisms by which epigenetic factors regulate osteoclast precursor differentiation during osteoclastogenesis remain poorly understood. Here, we show that the specific knockout of the chromatin remodeling factor Arid1a in bone marrow-derived macrophages (BMDMs) results in increased bone mass. The loss of Arid1a in BMDM inhibits cell-cell fusion and maturation of osteoclast precursors, thereby suppressing osteoclast differentiation. Mechanistically, Arid1a increases the chromatin access in the gene promoter region of sialic acid-binding Ig-like lectin 15 (Siglec15) by transcription factor Jun/Fos, which results in the upregulation of Siglec15 and promotion of osteoclast differentiation. However, the loss of Arid1a reprograms the chromatin structure to restrict Siglec15 expression in osteoclast precursors, thereby inhibiting BMDM differentiation into mature osteoclasts. Deleting Arid1a after ovariectomy (a model for postmenopausal bone loss) alleviated bone loss and maintained bone mass. In summary, epigenetic reprogramming mediated by Arid1a loss suppresses osteoclast differentiation and may serve as a promising therapeutic strategy for treating bone loss diseases. |
---|---|
ISSN: | 0884-0431 1523-4681 1523-4681 |
DOI: | 10.1093/jbmr/zjae042 |