Synthesis, Theoretical Study, and Anticonvulsant Evaluation of N‐Arylenaminones

N‐Arylenaminones are highly versatile compounds which can be synthesized in relatively simple ways. In this work we explored the synthesis of the four monosubstituted N‐(4‐R‐phenyl)enaminones 3 a (R=NO2), 3 b (R=F), 3 c (R=H), and 3 d (R=OMe) with the goal of determining the influence of the substit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biodiversity 2024-05, Vol.21 (5), p.e202400056-n/a
Hauptverfasser: Jiménez‐Vázquez, Hugo A., Guevara‐Salazar, J. Alberto, Quintana‐Zavala, Delia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:N‐Arylenaminones are highly versatile compounds which can be synthesized in relatively simple ways. In this work we explored the synthesis of the four monosubstituted N‐(4‐R‐phenyl)enaminones 3 a (R=NO2), 3 b (R=F), 3 c (R=H), and 3 d (R=OMe) with the goal of determining the influence of the substituents′ electronic effects on tautomer stability and biological activity. These compounds were analyzed by means of Density Functional Theory calculations (DFT), to evaluate the relative stability of the possible tautomers. We found that the enaminone structure is the most stable with respect to the ketoimine and iminoenol forms. In addition, all four compounds display anticonvulsant activity, with 3 d being the one that mostly increased latency and mostly decreased the number of convulsions with respect to the control group. The suggested mechanism of action involves blockage of the voltage‐dependent Na+ channels, considering that these molecules meet the structural characteristics needed to block the receptor, as is the case of the positive control molecules phenytoin (PHT) and valproic acid (VPA).
ISSN:1612-1872
1612-1880
DOI:10.1002/cbdv.202400056