Stabilization of a Dynamic Walking Gait Simulation

Forward dynamic simulations of human walking gait have typically simulated and analyzed a single step of the walking cycle, assuming symmetric and periodic gait. To enable simulations over many steps, a stabilizer is required to maintain the balance of the walking model, ideally mimicking the human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and nonlinear dynamics 2007-01, Vol.2 (1), p.65-72
Hauptverfasser: Peasgood, Mike, Kubica, Eric, McPhee, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forward dynamic simulations of human walking gait have typically simulated and analyzed a single step of the walking cycle, assuming symmetric and periodic gait. To enable simulations over many steps, a stabilizer is required to maintain the balance of the walking model, ideally mimicking the human balance control mechanism. This paper presents a feedback control system that stabilizes the torso orientation during a human walking gait dynamic simulation, enabling arbitrarily long simulations. The model is a two-dimensional mechanical simulation, in which the desired joint trajectories are defined as functions of time; the only external forces on the model are gravitational and ground reaction forces. Orientation or postural control is achieved by modulation of the rate at which lower limb joints move through angular trajectories. The controller design is based on a sequence of simple linear feedback controllers, each based on an intuitive control law. Controller parameters were determined iteratively using an optimization algorithm and repeated executions of the forward dynamics simulation to minimize control term errors. Results show the use of feedback control and joint speed modulation to be effective in maintaining balance for walking simulations of arbitrary length, allowing for analysis of steady-state walking.
ISSN:1555-1415
1555-1423
1555-1423
DOI:10.1115/1.2389230