Non-targeted screening and photolysis transformation of tire-related compounds in roadway runoff

Roadway runoff serves as a crucial pathway for transporting contaminants of emerging concern (CECs) from urban environments to receiving water bodies. Tire-related compounds originating from tire wear particles (TWPs) have been frequently detected, posing a potential ecological threat. Yet, the phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-05, Vol.924, p.171622-171622, Article 171622
Hauptverfasser: Chen, Jinfan, Tang, Ting, Li, Yanxi, Wang, Rui, Chen, Xingcai, Song, Dehao, Du, Xiaodong, Tao, Xueqin, Zhou, Jiangmin, Dang, Zhi, Lu, Guining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Roadway runoff serves as a crucial pathway for transporting contaminants of emerging concern (CECs) from urban environments to receiving water bodies. Tire-related compounds originating from tire wear particles (TWPs) have been frequently detected, posing a potential ecological threat. Yet, the photolysis of tire-related compounds within roadway runoff remains inadequately acknowledged. Addressing this deficit, our study utilized high-resolution mass spectrometry (HRMS) to characterize the chemical profile of roadway runoff across eight strategically selected sites in Guangzhou, China. 219 chemicals were identified or detected within different confidence levels. Among them, 29 tire-related contaminants were validated with reference standards, including hexa(methoxymethyl)melamine (HMMM), 1,3-diphenylguanidine (DPG), dicyclohexylurea (DCU), and N-cyclohexyl-2-benzothiazol-amine (DCMA). HMMM exhibited with the abundance ranging from 2.30 × 104–3.10 × 106, followed by DPG, 1.69 × 104–8.34 × 106. Runoff sample were exposed to irradiation of 500 W mercury lamp for photodegradation experiment. Photolysis results indicated that tire-related compounds with a low photolysis rate, notably DCU, DCMA, and DPG, are more likely to persist within the runoff. The photolytic rates were significantly correlated with the spatial distribution patterns of these contaminants. Our findings underscore TWPs as a significant source of pollution in water bodies, emphasizing the need for enhanced environmental monitoring and assessment strategies. [Display omitted] •Established contamination profile of roadway runoff via non-targeted screening•219 CECs were identified or detected in roadway runoff and tire leachate.•The kinetics and TPs of three typical tire-related compounds were assessed.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.171622