Simulation of island aggregation influenced by substrate temperature, incidence kinetic energy and intensity in pulsed laser deposition

Using kinetic Monte Carlo method, we have simulated a pulsed energetic growth process in pulsed laser deposition. During the growth of film, substrate temperature mainly influences upon film morphology by directly enhancing the adatom mobility through the temperature-dependent thermal vibration. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2006-11, Vol.253 (2), p.874-880
Hauptverfasser: Zhang, Duanming, Guan, Li, Li, Zhihua, Pan, Guijun, Tan, Xinyu, Li, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using kinetic Monte Carlo method, we have simulated a pulsed energetic growth process in pulsed laser deposition. During the growth of film, substrate temperature mainly influences upon film morphology by directly enhancing the adatom mobility through the temperature-dependent thermal vibration. By contrast, the effect of incidence kinetic energy on film growth is complex resulting from the collisions between the incident particles and the adatoms. The results show that improving incident kinetic energy cannot significantly accelerate the migration rate of adatom but change surface microstructure and promote single adatom formation resulting in more island aggregation density. Moreover, since pulse-influx characterizes pulsed laser deposition, the intensity per pulse contributes to the evolvement of nucleation density and the results illustrate that a general scaling law different from ordinary power law still exists in energetic growth of pulsed laser deposition.
ISSN:0169-4332
DOI:10.1016/j.apsusc.2006.01.029