Proton therapy induces a local microglial neuroimmune response
[Display omitted] •Photons and plateau protons induce similar neuroinflammatory transcriptomic changes.•Photons and plateau protons lead to microglial innate immune memory priming.•Proton-induced priming is age-dependent and slightly increased after SOBP protons.•Photons and protons induce similar m...
Gespeichert in:
Veröffentlicht in: | Radiotherapy and oncology 2024-04, Vol.193, p.110117, Article 110117 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Photons and plateau protons induce similar neuroinflammatory transcriptomic changes.•Photons and plateau protons lead to microglial innate immune memory priming.•Proton-induced priming is age-dependent and slightly increased after SOBP protons.•Photons and protons induce similar microglial morphologies.•Microglial changes are local and largely not dependent on the irradiated volume.
Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes.
Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation.
Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes.
Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges. |
---|---|
ISSN: | 0167-8140 1879-0887 1879-0887 |
DOI: | 10.1016/j.radonc.2024.110117 |