Generalized biomolecular modeling and design with RoseTTAFold All-Atom

Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2024-04, Vol.384 (6693), p.eadl2528-eadl2528
Hauptverfasser: Krishna, Rohith, Wang, Jue, Ahern, Woody, Sturmfels, Pascal, Venkatesh, Preetham, Kalvet, Indrek, Lee, Gyu Rie, Morey-Burrows, Felix S, Anishchenko, Ivan, Humphreys, Ian R, McHugh, Ryan, Vafeados, Dionne, Li, Xinting, Sutherland, George A, Hitchcock, Andrew, Hunter, C Neil, Kang, Alex, Brackenbrough, Evans, Bera, Asim K, Baek, Minkyung, DiMaio, Frank, Baker, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.adl2528