Boosting photocatalytic NO oxidation mediated by high redox charge carriers from visible light-driven C3N4/UiO-67 S-scheme heterojunction photocatalyst
[Display omitted] The construction of CN/UiO-67 (CNU) S-scheme heterojunction composites through in situ formation of UiO-67 on carbon nitride (C3N4) helps to address the limitations of carbon nitride (CN) in photocatalytic NO elimination. The optimized CNU3 demonstrates superior photocatalytic effi...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-06, Vol.663, p.992-1004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The construction of CN/UiO-67 (CNU) S-scheme heterojunction composites through in situ formation of UiO-67 on carbon nitride (C3N4) helps to address the limitations of carbon nitride (CN) in photocatalytic NO elimination. The optimized CNU3 demonstrates superior photocatalytic efficiency, which is attributed to electronic channels constructed by Zr-N bonds and S-scheme electron transport mechanism, effectively promoting the efficient separation of photogenerated charge carriers with high redox potentials. Density Functional Theory (DFT) calculations reveal redistributed electronic orbitals in CNU3, with progressive and continuous energy levels near the Fermi level, which bolsters electronic conduction. Comprehensive quenching experiments, Electron Paramagnetic Resonance (EPR), and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analyses highlight a synergistic interplay of electrons, holes, and superoxide radicals in CNU3, inhibiting the generation of toxic nitrogen oxide intermediates and culminating in highly efficient photocatalytic NO oxidation. This study not only elucidates the mechanisms underpinning the enhanced performance of CNU3 heterojunctions but also offers new perspectives on the preparation and interfacial charge separation of heterojunction photocatalysts. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2024.02.221 |